Mapping the ligand binding pocket in the cellular retinaldehyde binding protein.
نویسندگان
چکیده
Retinoid interactions determine the function of the cellular retinaldehyde binding protein (CRALBP) in the rod visual cycle where it serves as an 11-cis-retinol acceptor for the enzymatic isomerization of all-trans- to 11-cis-retinol and as a substrate carrier for 11-cis-retinol dehydrogenase (RDH5). Based on preliminary NMR studies suggesting retinoid interactions with Met and Trp residues, human recombinant CRALBP (rCRALBP) with altered Met or Trp were produced and analyzed for ligand interactions. The primary structures of the purified proteins were verified for mutants M208A, M222A, M225A, W165F, and W244F, then retinoid binding properties and substrate carrier functions were evaluated. All the mutant proteins bound 11-cis- and 9-cis-retinal and therefore were not grossly misfolded. Altered UV-visible spectra and lower retinoid binding affinities were observed for the mutants, supporting modified ligand interactions. Altered kinetic parameters were observed for RDH5 oxidation of 11-cis-retinol bound to rCRALBP mutants M222A, M225A, and W244F, supporting impaired substrate carrier function. Heteronuclear single quantum correlation NMR analyses confirmed localized structural changes upon photoisomerization of rCRALBP-bound 11-cis-retinal and demonstrated ligand-dependent conformational changes for residues Met-208, Met-222, Trp-165, and Trp-244. Furthermore, residues Met-208, Met-222, Met-225, and Trp-244 are within a region exhibiting high homology to the ligand binding cavity of phosphatidylinositol transfer protein. Overall the data implicate Trp-165, Met-208, Met-222, Met-225, and Trp-244 as components of the CRALBP ligand binding cavity.
منابع مشابه
In-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies
Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...
متن کاملInvestigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation
The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...
متن کاملIn-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies
Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...
متن کاملP-31: The Alteration of SpermatogenesisHas A Correlation with Sertoli Cell Mitochondrial Abnormal Morphology in Cytotoxicity of Testicular Tissue Mediatedwith Monosodium
Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...
متن کاملMolecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 14 شماره
صفحات -
تاریخ انتشار 2003